Nedir.Org *
Zeus

DNA Nedir

Resim Ekle Dosya Ekle Video Ekle Soru Sor Bilgi Ekle

DNA Nedir (Özet)


Kalıtımda rol oynayan organik bir molekül. Bir nükleik asit çeşiti. "Deoksiribo nükleik asit" adını alır. Kısaca DNA olarak gösterilir. Canlılarda yönetici bir moleküldür. Hücrenin protein ve enzim sentezinde rol oynar. Ayrıca yeni bir hücre meydana getirecek gerekli elemanları taşıdığından hücre bölünmesinin esasını teşkil eder.

DNA Nedir


Deoksiribonükleik asit veya kısaca DNA, tüm organizmalar ve bazı virüslerin canlılık işlevleri ve biyolojik gelişmeleri için gerekli olan genetik talimatları taşıyan bir nükleik asittir. DNA'nın başlıca rolü bilginin uzun süreli saklanmasıdır. Protein ve RNA gibi hücrenin diğer bileşenlerinin inşası için gerekli olan bilgileri içermesinden dolayı DNA; bir kalıp, şablon veya reçeteye benzetilir. Bu genetik bilgileri içeren DNA parçaları gen olarak adlandırılır. Ama başka DNA dizilerinin yapısal işlevleri vardır (kromozomların şeklini belirlemek gibi), diğerleri ise bu genetik bilginin ne şekilde (hangi hücrelerde, hangi şartlarda) kullanılacağının düzenlenmesine yararlar.

Kimyasal olarak DNA, nükleotit olarak adlandırılan basit birimlerden oluşan iki uzun polimerden oluşur. Bu polimerlerin omurgaları, ester bağları ile birbirine bağlanmış şeker ve fosfat gruplarından meydana gelir. Bu iki iplik birbirlerine ters yönde uzanırlar. Her bir şeker grubuna baz olarak adlandırılan dört tip molekülden biri bağlıdır. DNA'nın omurgası boyunca bu bazların oluşturduğu dizi, genetik bilgiyi kodlar. Protein sentezi sırasında bu bilgi, genetik kod aracılığıyla okununca proteinlerin amino asit dizisini belirler. Bu süreç sırasında DNA'daki bilgi, DNA'ya benzer yapıya sahip başka bir nükleik asit olan RNA'ya kopyalanır. Bu işleme transkripsiyon denir.

Hücrelerde DNA, kromozom olarak adlandırılan yapıların içinde yer alır. Hücre bölünmesinden evvel kromozomlar eşlenir, bu sırada DNA ikileşmesi gerçekleşir. Ökaryot canlılar (yani hayvan, bitki, mantar ve protistalar) DNA'larını hücre çekirdeği içinde bulundururken prokaryot canlılarda (yani bakteri ve arkelerde) DNA, hücre sitoplazmasında yer alır. Kromozomlarda bulunan kromatin proteinleri (histonlar gibi) DNA'yı sıkıştırıp organize ederler. Bu sıkışık yapılar DNA ile diğer proteinler arasındaki etkileşimleri düzenleyerek DNA'nın hangi kısımlarının okunacağını kontrol eder.

DNA ların Özellikleri


Nükleotit olarak adlandırılan birimlerden oluşan bir polimerdir. DNA zinciri 22 ila 26 Ångström arası (2,2-2,6 nanometre) genişliktedir, bir nükleotit birim 3,3 Å (0.33 nm) uzunluğundadır. Herbir birim çok küçük olmasına rağmen, DNA polimerleri milyonlarca nükleotitten oluşan muazzam moleküllerdir. Örneğin, en büyük insan kromozomu olan 1 numaralı kromozom yaklaşık 220 milyon baz çifti uzunluğundadır.

Canlılarda DNA genelde tek bir molekül değil, birbirine sıkıca sarılı bir çift molekülden oluşur. Bu iki uzun iplik sarmaşık gibi birbirine sarılarak bir çift sarmal oluşturur. Nükleotit birimler bir şeker, bir fosfat ve bir bazdan oluşurlar. Şeker ve fosfat DNA molekülünün omurgasını oluşturur, baz ise çifte sarmaldaki öbür DNA ipliği ile etkileşir. Genel olarak bir şekere bağlı baza nükleozit, bir şeker ve bir veya daha çok fosfata bağlı baza ise nükleotit denir. Birden çok nükleotidin birbirine bağlı haline polinükleotit denir.

DNA ipliğinin omurgası almaşıklı şeker ve fosfat artıklarından oluşur. DNA'da bulunan şeker 2-deoksiribozdur, bu bir pentozdur (beş karbonlu şekerdir). Bitişik iki şekerden birinin 3 numaralı karbonu ile öbürünün 5 numaralı karbon atomu arasındaki fosfat grubu, bir fosfodiester bağı oluşturarak şekerleri birbirine bağlar. Fosfodiester bağın asimetrik olması nedeniyle DNA ipliğinin bir yönü vardır. Çifte sarmalda bir iplikteki nükleotitlerin birbirine bağlanma yönü, öbür ipliktekilerin yönünün tersidir. DNA ipliklerinin bu düzenine antiparalel denir. DNA ipliklerin asimetrik olan uçları 5' (beş üssü) ve 3' (üç üssü) olarak adlandırılır, 5' uç bir fosfat grubu, 3' uç ise bir hidroksil grubu taşır. DNA ve RNA arasındaki başlıca farklardan biri, içerdikleri şekerdir, RNA'da 2-deoksiriboz yerine başka bir pentoz şeker olan riboz bulunur.

Çift sarmalı iki ipliğe bağlı bazlar arasındaki hidrojen bağları DNA'yı stabilize eder. DNA'a bulunan dört baz, adenin (A olarak kısaltılır), sitozin (C), guanin (G) ve timin (T) olarak adlandırılır. Bu dört baz şeker-fosfata bağlanarak bir nükleotit oluşturur, örneğin "adenozin monofosfat" bir nükleotittir.

Bazlar iki tip olarak sınıflandırılırlar: adenin ve guanin, pürin türevleridir, bunlar beş ve altı üyeli halkaların kaynaşmasından oluşmuş heterosiklik bileşiklerdir; sitozin ve timin ise pirimidin türevleridir, bunlar altı üyeli bir halkadan oluşur. Bir diğer baz olan urasil (U), sitozinin yıkımı sonucu seyrek olarak DNA'da bulunabilir. Kimyasal olarak DNA'ya benzeyen RNA'da timin yerine urasil bulunur.

DNA ve Genetik Kod


Genetik özelliklerimiz hücrelerimizdeki çekirdeğin içinde bulunan kromozomlarda taşınır. Kromozomlar DNA ve özel proteinlerin birleşmesiyle oluşur

DNA, hücrenin yönetici molekülüdür ve beslenme, solunum, üreme gibi canlılık faaliyetlerini yönetir. DNA'nın yapısında kalıtsal özelliklerimize etki eden yapılar bulunur. Bu yapılar genlerdir. Kalıtsal bilgiler genler tarafından taşınır.

Bilim insanları James Watson (Ceyms Vatsin) ve Francis Crick (Firensis Kirik) birlikte çalışarak üstte görülen DNA'nin yapısını temsil eden modeli hazırlamışlardır.

Nükleotitler DNA'nın temel yapı birimleridir. Bir nükleotidin yapısında aşağıdaki gibi fosfat, seker ve organik baz bulunur. Organik bazlar adenin (A), timin (T), sitozin (C) ve guanin (G)'dir. Nükleotidler hangi organik bazı içeriyorlarsa o bazın ismiyle adlandırılırlar.

nukleotit

*Nükleotitin yapısında bulunan şeker 5 karbonlu olup Deoksiriboz şekeridir.
*Fosfatlar DNA ya asitsi özelliği kazandırırlar.
*Nükleik asitler iki çeşittir. DNA ve RNA dır.
*Her bir Nükleik asidin (DNA) yapısındaki 4 çeşit nükleotidin farklı sıra , miktar ve farklı kullanımı sonucu farklı kalıtsal şifrelere sahip nükleik asitler (DNA) oluşur.

Örneğin adenin bazını içeren nükleotit "adenin nükleotit", guanin bazını içeren nükleotit "guanin nükleotit" olarak adlandırılır.

nukleotit

DNA'da, nükleotidler bir iplik oluşturacak şekilde bir araya gelirler. Bu iplikte her zaman adeninin karşısına timin, sitozinin karsısına guanin nükleotiti gelir.

DNA, iki iplikten veya zincirdenoluşur. Üstteki şekilde görüldüğü gibi birbirinin etrafında dolanan bu iplikler, DNA'nın bükülmüş bir merdiven gibi görünmesine sebep olur.

*DNA da Guanin nükleotit ile Sitozin nükleotit arasında 3 adet hidrojen bağı vardır.
*DNA da Adenin nükleotit ile Timin nükleotit arasında 2 adet hidrojen bağı vardır.

Bu Hidrojen bağları ile bağlanmış yapıya ikili sarmal olarak adlandırılır. Bu iki zincirin birleşmesi ile DNA oluşur.

Çevremize baktığımızda canlıların birbirlerinden ve diğer canlı türlerinden farklı olduğunu görüyoruz. Bir insanin, tırtılın, domatesin, hidranın; kısacası bütün canlıların her birinin hücrelerindeki yönetici molekül DNA'dır.

nukleotit

Canlıdan organik bazlara doğru sıralanış yukarıda verilmiştir.

DNA Yapısı

Hücre bölünmesi öncesinde hücredeki DNA molekülü miktarı iki katına çıkar. Bu olaya DNA'nın kendisini eşlemesi adi verilir.
DNA'nin kendisini nasıl eslediği üstteki şekilde görülmektedir.

DNA kendini eşlerken önce

*DNA'nın iki ipliği bir enzim yardımı ile birbirinden ayrılır. Aralardaki hidrojen bağları kopar.
*Daha sonra sitoplazmada serbest halde bulunan nükleotidler çekirdeğin içerisine girer ve DNA'nın açılan kısmındaki nükleotidlerle eşleşir.
*Bu esleşme sırasında, adenin nükleotitin karsısına timin nükleotit, sitozin nükleotitin karsısına da guanin nükleotit gelir.
*Sonuçta başlangıçtaki DNA molekülünün aynisi olan bir DNA molekülü daha oluşur.

DNA, hücre bölünmesi sırasında kendini eşleyerek yapısında bulunan bilgilerin yeni oluşacak yavru hücrelere geçmesini sağlar. Bütün canlılarda DNA molekülü adenin, timin, sitozin ve guanin bazlarından oluşmasına rağmen nükleotitlerin sayısında ve dizilisindeki farklılıklar canlıların birbirinden farklı olmasını sağlar.

Kromozomlar DNA'ları, DNA' lar da genetik özellikleri belirleyen genleri taşır. Genler ise nükleotidlerden oluşur.
Tahtaya yazılan bilgileri defterimize geçirirken bazı hatalar yapabiliriz. Benzer şekilde DNA molekülü de kendisini eslerken hatalar oluşabilir.

Mutasyon


DNA dizilimindeki bu değişiklik, farklı genetik özelliklerin ortaya çıkmasına sebep olabilir. Bazen, hücre bölünmesi sırasında kromozomların sayısında artma ya da azalma şeklinde değişiklikler de olabilir. DNA dizilimindeki ve kromozomlardaki değişiklikler mutasyon olarak adlandırılır.
Radyasyon , bazı kimyasal maddeler , ilaçlar ve güneş ışığı mutasyona sebep olabilir: Örneğin, gebelik döneminin ilk aylarında röntgen filmi çektirmek bebekte mutasyona, dolayısıyla gelişim bozukluklarına sebep olabilir.
Mutasyonlar,
*Hem vücut hem de üreme hücrelerinde oluşabilir.
*Üreme hücrelerinde görülen mutasyonlar dölden döle geçme özelliğine sahiptir.
*Vücut hücrelerinde görülen mutasyonlar ise ancak eşeysiz üreme gösteren canlılarda dölden döle geçebilir.
*Mutasyonların etkileri olumlu veya olumsuz olabilir. Örneğin bitki üreme hücrelerinde görülen mutasyon sonucu bitkilerin
büyüklüğü ya da tohumlarının sayısında değişiklik oluşabilir.
*Diğer taraftan zararlı mutasyonlar da vardır. insanların genlerinde meydana gelen bazı mutasyonlar farklı hastalıkların ve genetik bozuklukların ortaya çıkmasına sebep olmuştur. Örneğin; hemofili, orak hücreli anemi, albinoluk, alti parmaklılık, Down sendromu gibi rahatsızlıklar, mutasyon sonucu ortaya çıkmıştır.
*Ayni şekilde, bazı mutasyonların kansere sebep olduğu da bilinmektedir.

Modifikasyon


Çuha çiçeği ortam sıcaklığı 15-25 oC arasındaki bir ortamda yetiştirilirse çiçeklerin rengi kırmızı, 25-35 oC arasındaki bir ortamda yetiştirilirseçiçeklerinin rengi beyaz olur.
Ari ve karıncalarda larvaların beslenme koşulları değiştiğinde vücut şekilleri ve davranışları değişir. Ari larvaları çiçek tozuyla
beslendiğinde isçi arılar, ari sütüyle beslendiğinde ise kraliçe ari oluşur.
Çuha bitkisi, ari ve karıncalarda görüldüğü gibi çevre şartlarının etkisiyle canlılarda ortaya çıkan ve kalıtsal olmayan değişikliklere modifikasyon adi verilir. Spor yapan kişilerde kasların gelişmesi, yazın güneşli günlerde teninizin bronzlaşması da modifikasyona örnektir.

*Kalıtsal değildir. Nesilden nesile aktarılmaz.
Tek yumurta ikizlerinde genetik yapı aynidir. Bu ikizler farklı çevre şartlarında yetiştiklerinde farklı özellikler gösterirler.Bu modifikasyona örnektir.

Genetik Mühendisliği


Genetik Mühendisliği ve Biyoteknoloji Gelecekte, canlıların genetik yapılarının değiştirilmesiyle raf ömrü uzun, zararlı böceklere dayanıklı bitkilerin üretilebilecektir.
Genetik mühendisliğinin uygulamaları, insanlığın başta sağlık ve gıda olmak üzere birçok problemini çözmek ümidiyle günümüzde hızlı bir şekilde ilerlemektedir. Birçok genetik mühendisi, genlerle ilgili anormallikleri düzeltmek üzere çalışmalar yapmaktadır. Bunlarla öncelikle üreme hücrelerindeki zararlı genlerin gelecek kuşağa aktarılmasını önlemek amaçlanmaktadır. ilk genetik mühendisliği uygulamaları bitkilerin direncini artırmak amacıyla yapılmıştır. ilerleyen yıllarda DNA parmak izi, klonlama, gen tedavisi gibi çalışmalarla bu alandaki araştırmalar devam etmiştir. DNA'larımızda yer alan bazların dizilimi hepimizde farklılık gösterir. Belirli tekniklerle bu dizlimin, tıpkı mürekkebe bastırılmış parmak izi gibi bir izinin çıkarılması işlemine DNA parmak izi adi verilir. Klonlama ise DNA'nın belirli bir bölümünün, genellikle de bir genin kopyasını oluşturmak için kullanılan bir yöntemdir. Gen tedavisi; hastalara tedavi edici genleri aktararak ya da zararlı olan genleri etkisiz hale getirerek kronik sağlık problemlerini çözmektir. Ayrıca tarım ve hayvancılıkta daha fazla ve kaliteli ürün elde etmek için, türlerin ıslahı konusunda çeşitli çalışmalar yapılmaktadır. Genetik uygulamalar, yediğimiz bitkilerde birçok değişime yol açmıştır. Su anda antibiyotikler, hormonlar gibi kimyasal maddelerin üretiminde kullanılmak üzere bazı bitkilerin genetik yapısı değiştirilmektedir. Mikroplara ve böceklere karsı dirençli olacak şekilde geliştirilmiş bitki çeşitleri, genetik mühendisliği uygulaması sonucu oluşan ürünlerdendir. Genetik mühendisliğindeki gelişmelerin olumlu sonuçları tüm dünyada takdirle karşılanmakta ve bu konudaki geleceğe yönelik beklentileri artırmaktadır.Genetik mühendislerinin uygulamaları bazı problemleri de beraberinde getirmektedir. Örneğin genetik mühendisliği çalışmaları sonucunda zararlı bir böceğe karşı direnç kazanmış bir bitki üretildiğini düşünelim. Bu bitkinin polenleri zararlı böceğe karşı direnç oluşturan genleri taşır. Bu genleri taşıyan polenler de yakında büyüyen yabani bitkilere ulaşabilir. Genin bu şekilde yayılımı böceklerin yabani bitkilerle beslenmesini engelleyeceğinden ekosistem içindeki besin ağını bozabilir. Biyoteknolojik yöntemlerle, canlı hücreleri kullanarak endüstri ve tip alanında kullanılmak üzere çeşitli maddeler üretilir. Kanser, AIDS gibi birçok hastalığın tedavisi ve önlenmesinde kullanılacak genetik ürünlerin elde edilmesi, büyüme geriliği gibi sorunlara çare olacak ya da bulaşıcı hastalıklara karşı koyacak proteinlerin üretimi, hasar görmüş beyin hücrelerinin ve omuriliğin onarımı, vitamin tabletleri, meyveli yoğurt üretimi biyoteknoloji uygulamalarına verilebilecek örneklerdendir.

DNA Resimleri

  • 2
    DNA Sarmalı 2 yıl önce

    DNA Sarmalı

  • 1
    DNA Molekülü 2 yıl önce

    DNA Molekülü

  • 1
    DNA Yapısı 2 yıl önce

    DNA Yapısı

DNA Sunumları

  • 1
    Önizleme: 2 yıl önce

    DNA Yapısı

    (Göster / Gizle) Sunum İçeriği: Düz metin (text) olarak..
    1. Sayfa
    BiO 304 Moleküler BiyolojiDr. Hatice MERGEN

    2. Sayfa
    Nükleik AsitlerDNA ve RNA olmak üzere iki grupta toplanır.Nükleotid denilen alt birimlerden meydana gelmiştir.NÜKLEOTİD= BAZ+ŞEKER+FOSFORİK ASİT

    3. Sayfa
    NükleotiDler-Nükleik Asitlerin Yapı Taşları Nükleotid= azotlu baz + pentoz şekeri ( 5 karbonlu) + fosfat grubu içerirlerstyle.visibilitystyle.visibility

    4. Sayfa
    Azotlu bazlar: İki çeşittir9 atomlu, iki halkalı pürinler (Adenin, Guanin)6 atomlu tek halka içeren pirimidinler (Sitozin, Timin, Urasil)A,C,G,T ve U şeklinde simgelenirler.A,G,C DNA ve RNA’da ortak bulunurT->DNA’da, U->RNA’da bulunur.

    5. Sayfa
    Şeker= PentozNükleik aside adını taşıdığı şeker verir.Ribonükleik asitlerde-RİBOZDeoksiribonükleik asitlerde-DEOKSİRİBOZ bulunur.Deoksiribozun ribozdan farkı C-2’ pozisyonunda OH grubu olmamasıdır. style.visibility

    6. Sayfa


    7. Sayfa
    Nükleozit- baz + şekerNMP = nükleozit + 1 PO4NDP = nükleozit +2 PO4NTP = nükleozit + 3 PO4Nükleik asitlerin yapı taşıdırözel NTPs: ATP & GTPNükleik Asit Kimyasıstyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibility

    8. Sayfa
    Nükleotitlerde BağlanmaNükleotid yapısındaki bağlar son derece özgüldür.Şekerin C-1’ atomu azotlu bazla kimyasal bağ yapar.Pürinlerde N-9, pirimidin ise N-1 atomu şekerin C-1’ atomu ile bağ yapar.Nükleotidlerde fosfat grubu, şekerin C-2’, C-3’ yada C-5’ atomu ile bağ kurar.Bu yapı, biyolojik sistemlerde en yaygın olan ve DNA ve RNA’da bulunandır.style.visibilityppt_xppt_y

    9. Sayfa
    Polinükleotitlerİki mononükletit arasında bağ yapısında, iki şekere bağlı fosfat grubu yer alır oluşan bağ fosfodiester bağıdır, çünkü fosforik asit her iki taraftaki alkol grubu ( iki şekerdeki OH grubu ) ile ester bağı yapar. Aynı bağ, RNA da da bulunur.dinukleotitler & trinükleotitleroligonükleotitler (<20)polinükleotitler (>20)Uzun polinükleotid zincirleri varyasyon sağlamaktadır.1000 nt oluşan bir zincir 41000 kombinasyon ile oluşturulabilir. Levene’nin tetranükleotid hipotezi bu varyasyonu sağlamamaktadır.style.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibility

    10. Sayfa
    Fosfodiester bağları DNA ve RNA’nın kovalent iskeletidir

    11. Sayfa
    DNA Yapısının Aydınlatılması1940-1953 Erwin Chargaff, Maurice Wilkins, Rosalind Franklin, Linus Pauling, Francis Crick, James Watson arasında yarış1953 yılında Nature- “The Double Helix” yayını ile sona ermiştir.Watson- Crick için yapıyı aydınlatmadaki en önemli kaynaklar Hidrolize edilmiş DNA’nın baz kompozisyon analizleri DNA’nın X ışını kırınımı çalışmalarıdır.

    12. Sayfa
    1950’lerin başında iki deney hattının bulguları DNA’nın yapısına ilişkin ipuçlarını ortaya çıkarmıştır. Avusturya kökenli Amerikalı biyokimyacı Erwin Chargaff birçok türdeki DNA’nın eşit miktarda adenin (A) ve timin (T) ve eşit miktarda guanin (G) ve sitozin (C) bazları içerdiğini göstermiştir.Daha sonra İngiliz fizikçi Maurice Wilkins ve İngiliz kimyacı Rosalind Franklin X-ışını difraksiyon tekniğini kullanarak DNA’yı X-ışınları ile bombalamışlar ve sonra da X-ışınlarının kırılma ve yansımalarına göre molekülün yapısı hakkında fikir sahibi olmuşlardır.

    13. Sayfa
    Rosalind Franklin, Watson ve Crick’in DNA yapısını ortaya çıkarmalarında hayati öneme sahip bulgular elde etmiştir. Franklin, DNA’nın iyi çalışılmış kuru kristal “A” formunu ve hücrelerde görülen “B” formu olarak adlandırılan ıslak tipini birbirinden ayırt etmiştir. Mayıs 1952’de çektiği B formunun “51 no’lu fotoğrafı” elde edebilmek için 100 saat uğraşmıştır. Fotoğraftaki belirgin simetri Franklin’e molekülün kusursuz sarmal yapısında olduğunu ve fosfatların pozisyonunu göstermiştir. Franklin uzun zamandan beri DNA’nın genetik materyal için aday olduğunu düşünmektedir.1939’daki kolej günlerinde tuttuğu lab defterinde bir nükleik asit şeklini yanına “Kalıtıma geometrik temel?” şeklinde not düşmüştür.1953’ün başında tüm yapının ortaya çıkarılmasına çok yaklaşmıştır. 30 Ocakta Wilkins, Watson’a Franklin’in 51 no’lu fotoğrafını göstermiştir.

    14. Sayfa
    Yarış sürmektedir. Şubat boyunca ünlü biyokimyacı Linus Pauling DNA için üçlü sarmal yapı önermiştir. Bu sırada Watson ve Crick 51 nolu fotoğraf nedeniyle şeker fosfat iskeletinden emindirler ve dikkatlerini bazlar üzerine çevirmişlerdir. İronik olarak evreka anı sofistike kimya ya da kristalografi ile uğraşırken değil de cardboard kırpıntıları (kesik parçalar) ile uğraşırken gelmiştir. 28 Şubat cumartesi sabahı Watson, Crick ile toplantısına erken gelmiştir. Beklerken dört DNA bazının kesilmiş parçaları ile oynayıp A’yı A ile daha sonra G ile eşleştirmekle meşgul olmuştur. A’yı T’nin G’yi de C’nin yanına getirdiğinde benzer yapılar görmüş ve aniden bütün parçalar yerine oturmuştur. Crick 40 dakika sonra geldiğinde ikili bulmacayı çözdüklerini anlamıştır. Sonunda Watson, Crick ve Wilkins Nobel ödülü’nü kazanmıştır.1958’de Franklin 37 yaşında yumurtalık (ovarian) kanserinden öldüğü için Nobel ödülünü alamamıştır. Çünkü Nobel sadece yaşayan kişilere verilmektedir.

    15. Sayfa
    Baz Kompozisyonu Çalışmaları1949-1953 Erwin Chargaff ve ark.

    16. Sayfa
    Chargaff kuralıHerhangi bir türe ait DNA nın nükleotidlerine parçalandığında serbest kalan nukleotidlerde adenin miktarının timine, guanin miktarının da sitozine daima eşit olduğunun saptanmasıdır. Yani Chargaff kuralı‘na göre doğal DNA moleküllerinde adeninin timine veya guaninin sitozine oranı daima 1’e eşittir. (A/T=1 ve G/C=1)Pürinler= pirimidinler (A+G=T+C)İşte Watson ve Crick bu bulguları değerlendirerek böyle özelliklere sahip DNA makro molekülünün sekonder yapısına ait bir model geliştirdiler.

    17. Sayfa
    X-Işını KırınımıDNA zincirleri X-ışını bombardımanına tutulur ve molekülün atomik yapısına göre saçtığı ışınlar belirlenir. Buna göre;1947- William Astbury DNA’da 3.4 A aralıklarla tekrarlayan yapıların varlığını doğrulamış ve DNA’nın bir çeşit sarmal yapıda olduğunu ileri sürmüştür. 1950-1953- Rosalind Franklin 3.4 A aralıklarla tekrarlayan yapıların varlığını doğrulamış ve DNA’nın bir çeşit sarmal yapıda olduğunu daha saf örnekler kullanara gösterebilmiştir.

    18. Sayfa


    19. Sayfa
    style.visibility

    20. Sayfa


    21. Sayfa
    DNA’daki baz eşleşmesi modelin genetik açıdan en önemli özelliğidir. Bu yerleşim nedeniyle eksen boyunca büyük ve küçük oluklar ortaya çıkar. Sağ el sarmalının uzaydaki konformasyonu, Watson Crick’in verilerine en uygun olanıdır.

    22. Sayfa


    23. Sayfa
    DNA çifte sarmalında zincirler birbirlerinin tamamlayıcısıdır.

    24. Sayfa
    DNA molekülü kendini oluşturan nukleotidlerin sayısına bağlı olarak, büyüklüğü türden türe değişen, uzun zincir şeklinde bir yapı gösterir. İnsanda bu zincirin uzunluğu açıldığında 2 metreye kadar varabilir. Bütün halinde eldesi zincirin hassas ve kırılgan yapısından ötürü çok güçtür.Nukleotidlerin yapısı bazik olmasına karşın oımurgadaki PO4(fosforik asit) grubunun varlığı polinükleotid zincirlerin asit özellikte olmalarına yol açar ve nükleik asit terimi de bu özellikten kaynaklanır.DNA çift sarmalının dikkate değer ve önemli bir özelliği, molekülü oluşturan zincirlerin birbirlerinden kolaylıkla ayrılabilmesi ve yeniden birleşebilmesidir. Protein sentezi ve DNA replikasyonu (kendi kopyasını oluşturması) bu özellik sayesinde meydana gelebilir. DNA’nın iki zinciri, birbirine sadece H bağları ve hidrofobik etkileşimlerle bağlı olmaları nedeni ile, nükleotidleri arasındaki kovalent bağlardaki herhangi bir kopma olmaksızın çözülebilir (denatürasyon). Aynı şekilde çözülmüş molekülün zincirleri tamamlayıcı bazları arasında H bağlarının oluşumu ile birleşip sarmal yapıyı yeniden oluşturabilir (renatürasyon).

    25. Sayfa
    DNA’nın formlarıTek-krista-X-ışını analizi çalışmaları ile 5 A’luk çözünürlük 1 A’a kadar düşürülmüştür.A-DNA right handed (11 baz/ 1 tam dönüş/çap 23 Å)—yüksek tuz kons. Yada dehidrasyon koşullarında baskındır.B-DNA right handed (normal, 10 baz/tdönüş, çap 20 Å)C-DNA right handed (dehydrated, 9.3 bases/turn,19Å)D-DNA right handed (no guanine, 8 bases/turn) E-DNA right handed (no guanine, 7.5 bases/turn)Z-DNA left handed (all GC, 12 bases/turn, 18 Å)P-DNA DNA yapay şekilde uzatılırsa bu formu alır, fosfat grupları iç kısımdaazotlu bazlar sarmalın dış yüzündewhy should we care?Fizyolojik koşullarda rasgele bir DNA dizesinde en stabil form B formudur.A formu su dışında birçok çözeltide oluşan bir formdur.Z formu: sola doğru dönen heliks yapısındadır. Z formu bazı genlerin ekspresyonlarının regulasyonunda rol alabilir.

    26. Sayfa
    Farklı DNA formlarının özellikleri

    27. Sayfa
    Farklı DNA formları

    28. Sayfa
    DNA-RNADouble stranded - single strandedRNA’da T yerine U bulunur.TiplerimRNA, rRNA, tRNAsnRNA (RNA processing)Telomerase RNA (replikasyon)antisense RNA (regulasyon)style.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilitystyle.visibility

    29. Sayfa
    DNA ve RNA Araştırmalarında Kullanılan Analitik YöntemlerU.V ışığının soğurulması (254-260 nm arasında en fazla)Çökelme Davranışı- Nükleik asitler çeşitli gradiyent santrifügasyon işlemleri ile ayrılabilirler. Çökelme özelliği molekülün yoğunluğu, kütlesi ve biçimine bağlıdır ve Svedberg katsayısı (S) olarak ölçülür.

    30. Sayfa
    Nükleik asitlerin Denatürasyonu ve Renatürasyonu DNA’nın denatürasyonu sonucu H-bağları kopa, çift zincir çözülür ancak kovalent bağlar kırılmaz. Isı yada kimyasal yolla olabilir.Denatürasyon sırasında DNA akışkanlığı azalır, U.V absorbsiyonu ve denge yoğunluğu artar.Isı sonucu oluşan denatürasyona erime-melting denirIsıtılan DNA’nın U.V absorbsiyonundaki artışa hiperkromik kayma denir.Erime sırasında, DNA’nın 260 nmdeki absorbsiyonu sıcaklığa karşı grafiklenirse br erime profili elde edilir. Bu eğrinin orta noktasına erime sıcaklığı (Tm) denir. DNA zincirinin %50’sinin açıldığı sıcaklıktır.

    31. Sayfa
    DNA’nın ısı ile denatürasyonu

    32. Sayfa
    DNA’nın denatürasyonu

    33. Sayfa
    Kısmen denatüre DNA

    34. Sayfa
    DNA hibridizasyonuDNA çifte sarmalı ve RNA denatüre olabilir.Anneal: Denatüre segmentin tekrar çifte sarmal oluşturmasıFarklı türlerin nükleik asidleri hibrid formlar oluşturabilirler. Türler ne kadar yakınsa hibridizasyon o kadar kolay gerçekleşir.Nükleotidler ve nükleik asidler non enzimatik transformasyona uğrarlar.

    35. Sayfa
    Kromozom Yapısı ve DNA Organizasyonu

    36. Sayfa
    İnsan genomu ≈ 3 x 109 bpİnsan diploidtir, her çekirdek 6 x 109 bp yada ≈ 2 m DNA içerir5-10 mm çapındaki çekirdeğe nasıl sığmaktadır?style.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_c

    37. Sayfa
    DNA molekülünün büyüklüğünün hücrenin boyutları ile kıyaslanması

    38. Sayfa
    DNA’nın Kromozomlarda PaketlenmesiKromozomlar içerdikleri DNA moleküllerinden çok daha kısadırlar. Bu nedenle DNA’nın kromozomlara paketlenmesi için hayli organize bir paketleme sistemi gereklidir. Ökaryotlarda DNA kromatin şeklnde düzenlenmiştir.DNA paketlenmesi ile ilgili ilk veriler 1970’lerde biyokimyasal analizler ve EM çalışmalarından elde edilmiştir.İlk bilgiler DNA’nın DNA-binding proteinler olarak da bilinen histonlar ile ilişkili olduğu idi. Ancak ayrıntılı yapı billinmiyordu.1973-74 yıllarnda birkaç araştırma grubu kromatinler (DNA-histon kompleksi) üzerinde nüklease protection assay’i yapmışlardır. DNA-histon kompleksi enzimlerle muamale edildiğinde DNA sadece histon proteinlerinin yer almadığı bölgelerden kesilmiştir. Yaklaşık 200 bç uzunluğunda pekçok fragment oluşmuştur. Bu gözlem enzimatik parçalanmanın gelişigüzel olmadığını göstermiştir.

    39. Sayfa
    DNA’nın Kromozomlarda PaketlenmesiKromozomlar içerdikleri DNA moleküllerinden çok daha kısadırlar. Bu nedenle DNA’nın kromozomlara paketlenmesi için hayli organize bir paketleme sistemi gereklidir.İnterfaz sırasında, genetik madde ve ilgili proteinler açılırlar ve nükleusun içinde kromatin olarak dağılırlar. Mitoz başladığında kromatin yoğunlaşır ve pofaz sırasında bilinen tipik kromozomlar şeklini alır. Bu yoğunlaşma, her birkromozom ipliğinin boyunun 10.000 kez kısalmasını sağlar.DNA paketlenmesi ile ilgili ilk veriler 1970’lerde biyokimyasal analizler ve EM çalışmalarından elde edilmiştir.İlk bilgiler DNA’nın DNA-binding proteinler olarak da bilinen histonlar ile ilişkili olduğu idi. Ancak ayrıntılı yapı billinmiyordu.1973-74 yıllarnda birkaç araştırma grubu kromatinler (DNA-histon kompleksi) üzerinde nüklease protection assay’i yapmışlardır. DNA-histon kompleksi enzimlerle muamale edildiğinde DNA sadece histon proteinlerinin yer almadığı bölgelerden kesilmiştir. Yaklaşık 200 bç uzunluğunda pekçok fragment oluşmuştur. Bu gözlem enzimatik parçalanmanın gelişigüzel olmadığını göstermiştir.

    40. Sayfa


    41. Sayfa
    Ada ve Donald Olins, taneciklerin kromatin zinciri ekseni boyunca düzenli olarak yerleştiğini ve bir zincir üzerindeki boncukları andırdığını söylemişlerdir. (v-body, nu, nükleozomlar)Nükleozom-DNA etkileşimi çalışmaları; H2A, H2B, H3 ve H4 histonlarının (H2A)2, (H2B)2, (H3)2 ve (H4)2 şeklinde iki tip tetramer oluşturduğunu göstermiştir. Nükleozom yapısındaki 4 protein: H2A, H2B, H3, ve H4H3 ve H4 are arjinice zengin, yüksek oranda korunmuş H2A ve H2B lizince daha zenginArjinin ve lizin histidin, histon proteinlerinin bazik ve pozitif yüklü olmasına neden olur.Kornberg- tekrarlayan herbir nükleozomda bu iki tetramerden birer tane olduğunu yaklaşık 200 bç lik DNA ile birleştiğini iler sürmüştür.Nükleaz ile parçalama işlemi biraz kısa tutulursa, 200 bç lik DNA’dan bir kısmı nükleozomdan ayrılır ve 196 bç içeren Nükleozom kor Partikülü elde edilir. Bu sayı çalışılan tüm organizmlarda aynıdır.1984- Finch ve Klug X ışını analizleri ile detaylı nükleozom yapısı-196 bç lik çekirdek DNA, nükleozom başına 1.7 dönüş yapacak şekilde histon oktamerinin etrafını sola doğru süper sarmal yaparak sarar.

    42. Sayfa
    Histonlar küçük bazik proteinlerdir

    43. Sayfa
    Nükleozom yapısındaki beşinci protein, H1H1, nükleozomun bir parçasıdır anck oktomerin dışında gibi görülürH1 organizmalar ve dokular arasında farklılıklar gösterir.Ausio Jstyle.visibilityppt_cstyle.visibilityppt_c

    44. Sayfa
    Nükleozom protein çekirdeği

    45. Sayfa
    2nm çapındaki DNA11 nm çapında nükleozom 30 nm kromatin iplikleri (solenoid) oluşturur.Mitotik kromozom yapısında; sayısız 30 nm solenoidler 300 nm çapında kromatin iplikleri metafaz kromzomundaki kromozom kolları olan kromatidleri oluşturmak üzere kıvrılır700 nm çapında kromatit kardeş kromatitler 1900 nm uzunluğunda kromozom

    46. Sayfa
    A TT AG CC GG CTATAGCC GG CT AA TPackaging DNAHistone proteinsHistoneoctomerB DNA Helix2 nmstyle.visibilitystyle.visibilityppt_xppt_ystyle.visibilityppt_xppt_ystyle.visibilityppt_wppt_hstyle.visibilityppt_wppt_h

    47. Sayfa
    A TT AG CC GG CTATAGCC GG CT AA TPackaging DNAHistone proteinsB DNA HelixHistoneoctomer2 nm

    48. Sayfa
    A TT AG CC GG CTATAGCC GG CT AA TPackaging DNAHistone proteinsHistoneoctomerNucleosome11 nmB DNA Helix2 nmstyle.visibilityppt_xppt_ystyle.visibilityppt_wppt_h

    49. Sayfa
    Packaging DNAA TT AG CC GC GG CT AA THistone H1style.visibilityppt_xppt_y

    50. Sayfa
    DNA PaketlenmesiA TT AG CC GC GG CT AA THistone H1

    51. Sayfa
    DNA PaketlenmesiA TT AG CC GC GG CT AA TProtein scaffold11 nm“Beads on a string”30 nmTight helical fiberLooped Domains200 nmstyle.visibilityppt_xppt_ystyle.visibilitystyle.visibilityppt_xppt_ystyle.visibilitystyle.visibilitystyle.visibilityppt_xppt_ystyle.visibilityppt_xppt_ystyle.visibilityppt_wppt_hstyle.visibilityppt_wppt_hstyle.visibilityppt_wppt_h

    52. Sayfa
    DNA PaketlenmesiGCATProtein scaffoldMetaphase Chromosome700 nm11 nm30 nm200 nm2 nmLooped DomainsNucleosomesB DNA HelixTight helical fiberstyle.visibilitystyle.visibilitystyle.visibilitystyle.visibilityppt_wppt_hstyle.visibilitystyle.visibilityppt_wppt_hstyle.visibilityppt_wppt_h

    53. Sayfa
    Bir ökaryotik kromozomda DNA’nın katlanma modeli

    54. Sayfa
    Kromatin: Bölünmeyen ökaryotik hücredeki kromozomal materyale denir. Amorftur ve nükleus’ta rasgele dağılmıştır.Histon: Bir kromatinde DNA’nın sıkıca bağlantılı olduğu proteinlerNükleozom: Histonlar ve DNA nükleozom adı verilen yapılar üniteler içinde katlanırlar.

    55. Sayfa
    Heterokromatin Yapısı Kromatin Tipleri1928- interfazda kromozomun bazı kısımlarının açılmadan kaldığı ve koyu boyandığı bulunmuştur.Heterokromatin – DNA’nın en fazla kondanse olduğu yerdir, ve genellikle transkripsiyonel aktivesi yoktur. Ya gen içermezler yada yada baskılanmış genleri içerirler. Hücre döngüsünün S fazında ökromatinden daha sonra replike olurlar. Ökaryotik DNAların bazı bölgelerinin protein kodlamadığına dair ilk ipuçlarını vermiştir.Sentromer ve telomer bölgeleri heterokromatinden oluşur.Y kromozomunun büyük kısmı ve Barr cisimciği olarak bilinen inaktif X kromozları hetrokromatiktir.Position effect (Durum etkisi): belirli heterokromatik bölgeler aynı kromozom üzerinde yer değiştirdiğinde ya da homolog olmayan başka bir kromozoma geçtiğinde, bu bölgede genetik olarak aktif olan kısımlar, eğer yanlarına transloke olmuş heterokromatin gelirse bazen inaktif hale geçerler. Yani bir genin yada bir gen grubunun diğer genetik maddeye göre göreceli durumları onların ifadelerini etkileyebilir.Ökromatin – Aktif genlerin yer aldığı bölgelerdir – genellikle daha az kondansedir.

    56. Sayfa
    Kromozom Bantlama TekniğiSitolojik öntemler kullanarak kromozomların uzun eksenleri boyunca farklı boyanmalarını sağlayan bantlama teknikleri geliştirilmiştir.Pardue ve Gall C-bantlama; Kromozom preparatları ısı ile denatüre edilip sonra Giemsa ile boyanırsa özgül boyama profilleri ortaya çıkar.Kromozomların heterokromatin özelliğindeki sentromer bölgeleri boyayı kolaylıkla alır. Caspersson ve ark Q bantlama; metafaz kromozomlarını florokrom kuinakrin mustard ile muamele edip floresan mikroskobunda inceleyerek 23 çift insan kromozomunu ayırt etmişlerdir.R-bantlama; G-bantlarının tersi bir profil gösterir.1971Paris’te, G bant profilleri temel alınarak insan kromozomlarının bant paternlerinin ortak sınıflandırmasını sağlayan bir toplantı yapılmıştır.

    57. Sayfa
    Junk DNA1960 ların sonlarına doğru makalelerde ökaryotik DNA’nın büyük miktarda tekrar eden ve protein olarak kodlanmayan diziler içerdiği rapor edilmiştir. (Britten and Kohne, 1968). 1970, Junk DNA terimi non-coding DNA için kullanılmıştır. (Ohno, 1972). style.visibilityppt_cstyle.visibilityppt_c

    58. Sayfa
    Junk DNA TipleriNowak (1994) 9 tip junk DNA Bunlar 3 büyük grupta toplanır.Repetitive DNA sequencesUntranslated parts of RNA transcripts (pre-mRNA)Other non-coding sequencesstyle.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_c

    59. Sayfa
    Repetitive DNA Repetitive DNA tipleri: 1. Satellites 2. Minisatellites 3. Microsatellites 4. Short (300 bp) ve Long (up to 7,000 bp) Interspersed Elements (SINEs and LINEs) style.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_cstyle.visibilityppt_c

    60. Sayfa
    Repetitive DNA Genom büyüklüğü ve organizma komleksliği ile arasında bağlantı olmaması ilk yıllarda moleküler biyoloji için bir puzzle olmuştur (C-value paradox). Örn. İnsan genomu, maya S. Cerevisiae genomundan 200 kat daha büyükk iken Amoeba dubia genomundan ise 200 kat daha küçüktür. Bu paradoks genomların büyük miktarda repetitive sekanslar içerebileceklerinin ispatlanması ile çözülmüştür. DNA kategorileri 1. Tek kopya DNA’lar 2. Repetitive DNA’lar (=junk/ignorant/Selfish DNA)

    61. Sayfa
    TanımlarYüksek sayıda tekrarlayan dizeler ( highly repetitive, simple-sequence DNA): Bir hücrede milyonlarca kez tekrarlayan 10 baz çiftinden daha kısa DNA segmentleri (%10).Kısmen tekrarlayan DNA (moderately repetitive): En az 1000 kez tekrarlanan birkaç yüz baz çifti uzunluğunda DNA segmentleri (%20).Satellit DNA: Çoğu ökaryotik kromozomdaki en önemli iki yapı olan sentromer ve telomer ile ilişkili sezyum klorid dansite gradient santrifüjü ile uydu bantlar şeklinde diğer DNA dizelerinden ayrılan temel-DNA dizeleri.Sentromer: Hücre bölünmesi esnasında proteinler için kromozomlara bağlantı sağlayan DNA dizisi içeren bölge.Telomer: Ökaryotik kromozomun uçlarında kromozomu stabilize eden bölgeler.

    62. Sayfa
    Ökaryotik kromozomlar oldukça komplekstir

    63. Sayfa
    Highly Repetitive DNAİnsan a satellit DNA (centromeric) tipik olarak 171 bç uzunluğundadır ve dimer (342 bç) yada 16 tekar (2736 bç) ünitesi halinde bulunurlar. Genellikle minisatellit ve mikrosatellitlerden daha az uzunluk varyasyonlarına sahiptirler.İnsan b satellitler 68 bç lik bir monomerin 30.000-60.000 (2.040.000-4.080.000 bç) kopyası ile oluşmaktadır. Metacentrik kro 9 ve akrosentrik kromozomlar 13, 14, 15, 21, 22’de yer alırlar.

    64. Sayfa
    Middle repetitive DNAİnterspersed repeats Memeli interspersed repeatler genellikle 3 sınıfa ayrılırlar: 1. LINE and SINE repeats (non-LTR yada poly-A retro(trans)posons) 2. LTR retroposonlar (retrovirus-like elements) 3. DNA transposonlar Tandemly repeated DNA 1. Microsatellit DNA (dinükleotidler) 2. Minisatellite DNA (VNTR’s) 3. Çok kopya genler (rRNA)

DNA Videoları

  • 2
    2 yıl önce

    DNA Modeli Nasıl Yapılır Örnek Anlatım Videosu

  • 1
    2 yıl önce

    DNA Yapısı Konusu Video Anlatımı

DNA Soru & Cevap

Bu yazı hakkında ilk soru soran sen ol..

DNA Ek Bilgileri

Bu yazıya sende yeni bilgi ekleyerek gelişmesine yardımcı olabilirsin..

Yazı İşlemleri
İlgili Yazılar
Sen de Ekle

Sende, bu sayfaya

içerik ekleyerek

katkıda bulunabilirsin.

(Resim, sunum, video, soru, yorum ekle..)
Facebook Grubumuz

Birşey Unutmadın mı ?

Bizi sonra tekrar bulmak için sitemizi aşağıdan beğenmelisin